Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2200321

ABSTRACT

Acute respiratory distress syndrome (ARDS) and sepsis are risk factors contributing to mortality in patients with pneumonia. In ARDS, also termed acute lung injury (ALI), pulmonary immune responses lead to excessive pro-inflammatory cytokine release and aberrant alveolar neutrophil infiltration. Systemic spread of cytokines is associated with systemic complications including sepsis, multi-organ failure, and death. Thus, dampening pro-inflammatory cytokine release is a viable strategy to improve outcome. Activation of cannabinoid type II receptor (CB2) has been shown to reduce cytokine release in various in vivo and in vitro studies. Herein, we investigated the effect of HU-308, a specific CB2 agonist, on systemic and pulmonary inflammation in a model of pneumonia-induced ALI. C57Bl/6 mice received intranasal endotoxin or saline, followed by intravenous HU-308, dexamethasone, or vehicle. ALI was scored by histology and plasma levels of select inflammatory mediators were assessed by Luminex assay. Intravital microscopy (IVM) was performed to assess leukocyte adhesion and capillary perfusion in intestinal and pulmonary microcirculation. HU-308 and dexamethasone attenuated LPS-induced cytokine release and intestinal microcirculatory impairment. HU-308 modestly reduced ALI score, while dexamethasone abolished it. These results suggest administration of HU-308 can reduce systemic inflammation without suppressing pulmonary immune response in pneumonia-induced ALI and systemic inflammation.


Subject(s)
Acute Lung Injury , Cannabinoids , Pneumonia , Respiratory Distress Syndrome , Sepsis , Mice , Animals , Endotoxins/adverse effects , Microcirculation , Pneumonia/drug therapy , Pneumonia/etiology , Pneumonia/pathology , Inflammation/pathology , Lung/pathology , Cannabinoids/adverse effects , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Cytokines , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Lipopolysaccharides/toxicity , Dexamethasone/adverse effects , Mice, Inbred C57BL
2.
Molecules ; 27(13)2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1934172

ABSTRACT

Iron plays a critical role in the immune response to inflammation and infection due to its role in the catalysis of reactive oxygen species (ROS) through the Haber-Weiss and Fenton reactions. However, ROS overproduction can be harmful and damage healthy cells. Therefore, iron chelation represents an innovative pharmacological approach to limit excess ROS formation and the related pro-inflammatory mediator cascades. The present study was designed to investigate the impact of the iron chelator, DIBI, in an experimental model of LPS-induced acute lung injury (ALI). DIBI was administered intraperitoneally in the early and later stages of lung inflammation as determined by histopathological evaluation. We found that lung tissues showed significant injury, as well as increased NF-κB p65 activation and significantly elevated levels of various inflammatory mediators (LIX, CXCL2, CCL5, CXCL10, IL-1𝛽, IL-6) 4 h post ALI induction by LPS. Mice treated with DIBI (80 mg/kg) in the early stages (0 to 2 h) after LPS administration demonstrated a significant reduction of the histopathological damage score, reduced levels of NF-κB p65 activation, and reduced levels of inflammatory mediators. Intravital microscopy of the pulmonary microcirculation also showed a reduced number of adhering leukocytes and improved capillary perfusion with DIBI administration. Our findings support the conclusion that the iron chelator, DIBI, has beneficial anti-inflammatory effects in experimental ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation Mediators , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Lipopolysaccharides/pharmacology , Lung , Mice , NF-kappa B , Pyridines , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL